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Abstract 

This paper represents, a comparison between four Evolutionary Algorithms (EAs) i.e. Particle swarm optimization(PSO), 

Artificial Bee Colony algorithm(ABC), Shuffled frog leaping algorithm(SFL) and Imperialistic competitive algorithm (ICA) 

for solving optimization problems is made. These techniques can be useful to solve complicated real-world problems. Testing 

of these algorithms with standard problems is necessary to check their effectiveness. The basic versions of four algorithms 

are implemented in MATLAB and are applied to twenty-five unconstrained continuous optimization problems available in 

literature. 

Index Terms: EAs, Optimization, PSO, ABC, SFL, ICA 

 

1. Introduction 

In computational science, optimization refers to the 

selection of a best element from some set of available 

alternatives. In the simplest case, this means solving 

problems in which one seeks to maximize (or to 

minimize) a real function by systematically choosing the 

values of real or integer variables from within an allowed 

set. Evolutionary optimization techniques can be used for 

getting near optimal solutions of difficult optimization 

problems. There are different types of Evolutionary 

techniques in use, natural evolutionary techniques e.g. 

GA,DE etc., swarm intelligence-based techniques e.g. 

PSO,ABC etc.andcultural algorithms e.g. ICA. 

Evolutionary algorithms are stochastic search methods 

that mimic the metaphor of natural biological evolution 

and/or the social or cultural behaviour of species. 

Researchers have developed computational systems that 

mimic the efficient behaviour of species such as birds, 

bees, and frogs as a means to seek faster and more robust 

solutions to complex optimization problems. The first 

evolutionary based technique introduced in the literature 

was the genetic algorithm. GAs was developed based on 

the Darwinian principle of the „survival of the fittest‟ and 

the natural process of evolution through reproduction [1]. 

A popular swarm intelligence-based algorithm is the 

particle swarm optimization algorithm which was 

developed by Eberhart and Kennedy in 1995[2]. It models 

the social behaviour of bird flocking or fish schooling. 

Another swarm intelligence-based algorithm is artificial 

bee colony algorithm proposed by Karaboga in 2005[3], 

which mimic the foraging behaviour of a honeybee 

colony. Shuffled Frog Leaping algorithm developed by 

Eusuff and Lansey in 2003[4] is a mementicmetaheuristic 

based on the frog behaviour. In the SFL, the population 

consists of a set offrogs (solutions) that is partitioned into 

subsets referred to as memeplexes. The different 

memeplexes are considered as different cultures of frogs, 

each performing a local search. Within each memeplex, 

the individual frogs hold ideas, that can be influenced by 

the ideas of other frogs, and evolve through a process of 

mementic evolution. After a defined number of mementic 

evolution steps, ideas are passed among memeplexes in a 

shuffling process. The Imperialist Competitive Algorithm 

proposed by Atashpazet al. [5]is based on a socio-

politically inspired optimization strategy. In this paper, 

the four EAs are reviewed and a flowchart for each 

algorithm is presented to facilitate its implementation. 

Performance comparison among the four algorithms is 

then presented. The standard versions of these techniques 

use pseudo-random numbers which cannot ensure the 

optimization‟s ergodicity in solution space because they 

are absolutely random [6]therefore, a slight modification 

is done in each of the mentioned EAs by employing the 

chaotic operator (with Logistic map) in place of random 

number generator. Chaos method has the particular 

characteristics, such as the randomicity and ergodicity, 

which can enhance the diversity of the particles and 

actuate the particles to move out from the local near-

optimal solutions[7].Comparison is also made between 

these modified EAs. 

In each of these EAs a population of candidate solutions 

is generated randomly. These populations are called with 

different names in different techniques. 
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2. Evolutionary algorithms(EAs): 

 

2.1 Particle Swarm Optimization(PSO) 

 
PSO optimizes a problem by having a population of 

candidate solutions, here dubbed particles, and moving 

these particles around in the search-space according to 

simple mathematical formulae over the particle's position 

and velocity. Each particle's movement is influenced by 

its local best-known position called pBest and the best-

known position of the entire swarm called gBest. In this 

way it is expected that swarm moves toward the best 

solution[2].  

The position of a particle refers to a possible solution of 

the function to be optimized, which is updated in each 

iteration using formula 2. Here velocity of particle in each 

iteration is calculated using formula 1. If R is range of 

vector x then velocity is normally initialized randomly in 

the range [-R, +R]. 

vi= ω vi + φprp (pBesti-xi) + φgrg (gBest-

xi)..........  (1) 

xi=xi+vi                   ..........   (2) 
The parameter ω is called the inertia weight and controls 

the magnitude of the old velocity in the calculation of the 

newvelocity, whereas φp and φg determine the significance 

of pBestandgBestrespectively,rp and rgare the random 

numbers generated in the range [0,1]. Furthermore, vi at 

any iteration is constrained by the parameter vmaxwhich is 

normally taken about 20% of the range of v. If in any 

iteration position of the particle crosses the boundary then 

velocity is adjusted so that particles position reaches to 

the boundary which is called clamping of velocity. 

 

In the modified version rpandrgare the chaotic numbersin 

the range [0,1]. 

 
Fig.1 The flowchart of PSO algorithm 

 

2.2Artificial Bee Colony algorithm (ABC) 

 
In ABC algorithm, the position of a food source 

represents a possible solution to the optimization problem. 

At initialization, a set of food source positions are 

randomly produced. The nectar amount retrievable from 

food source corresponds to the quality of the solution 

(fitness value) represented by that food source. Each cycle 

of the search consists of three steps after initialization 

stage: placing the employed bees onto the food sources 

and calculating their nectar amounts; placing the 

onlookers onto the food sources and calculating the nectar 

amounts and determining the scout bees and placing them 

onto the randomly determined food sources. 

Each employed bee searches a nearby food source and 

checks its nectar amount, if new food source is having 

higher nectar(better fitness) then it forgets the previous 

food source and remembers only new one. At the second 

step, an onlooker prefers a food source area depending on 

the nectar information distributed by the employed bees. 

As the nectar amount of a food source increases, the 

probability of that foodsource chosen also increases. After 

selecting a food source onlooker bee searches, a nearby 

source and checks itsnectar amount, if new foodsource is 

having higher nectar(better fitness) then it forgets the 

previous food source and remembers only new one. 
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Searching of nearby food source by employed and 

onlooker bees is done according to following equation[3]. 

 

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + ∅𝑖𝑗 (𝑥𝑖𝑗 − 𝑥𝑘𝑗 ) 

Where𝑖, 𝑘 ∈  1,2 … . . 𝑁𝑆 𝑁𝑆𝑖𝑠𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑓𝑜𝑜𝑑𝑠𝑜𝑢𝑟𝑐𝑒𝑠 

 

And𝑗 ∈

 1,2 … … 𝐷 𝐷𝑖𝑠𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑝𝑟𝑜𝑏𝑙𝑒𝑚.𝑘and𝑗are 

randomly chosen indexes. Although 𝑘 is determined 

randomly it should be different from 𝑖. ∅𝑖𝑗 is a random 

number between [1,-1]. If a parameter value produced by 

this operation exceeds its predetermined limit, the 

parameter can be set to an acceptable value. Normally the 

value of the parameter exceeding its limit is set to its limit 

value (clamping). 

Selection of a food source by an onlooker bee is done on 

the basis of probability value associated with that food 

source,𝑝𝑖  calculated by the following expression [3]. 

 

𝑝𝑖 =
𝑓𝑖𝑡𝑖

 𝑓𝑖𝑡𝑖
𝑁𝑆
𝑖=1

 

 
where𝑓𝑖𝑡𝑖  is the fitness of 𝑖𝑡ℎ  food source. 

For minimization type problems 𝑓𝑖𝑡𝑖=1/(objective 

function value for 𝑖𝑡ℎ food source). 

In this work, after calculating probabilities selection of 

food source is done on the basis of Roulette Wheel 

Selection. 

 

The food source which is abandoned by the bees is 

replaced with a new food source by the scouts. In ABC, if 

a position cannot be improved further through a 

predetermined number of cycles, then that food source is 

assumed to be abandoned. Suppose a food source 𝑥𝑖  is 

abandoned, then the scout discovers a new food source 

randomly to replace the 𝑥𝑖 . 

In the modified version chaotic number can be used to 

generate initial population, to search neighbouring food 

source by employed and onlooker bees, and to discover a 

new food source by scout bees. In this work chaotic 

numbers are used only in searching of neighbourhood 

solutions. 

Fig.2 The flowchart of ABC algorithm 

2.3Shuffled frog leaping algorithm(SFL) 

 
In the SFL, the population consists of a set of frogs 

(solutions) that is partitioned into subsets referred to as 

memplexes. The different memplexes are considered as 

different cultures of frogs, each performing a local search. 

Within each memplex, the individual frogs hold ideas, 

that can be influenced by the ideas of other frogs, and 

evolve through a process of mementic evolution. After a 

defined number of mementic evolution steps, ideas are 

passed among memplexes in a shuffling process [8]. The 

local search and the shuffling processes continue until 

defined convergence criteria are satisfied [4]. 

In SFL an initial population of p frogs is created 

randomly. Each frog x is a D dimensional vector and is a 

potential solution to the problem. Afterwards fitness value 

of each frog is calculated and frogs are sorted in 

descending order of their fitness. Then the entire 

population is divided into mmemplexes with n=p/m frogs 

in each memplex. In this process first frog goes to first 
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memplex, second to second and m to m
th

memplex then 

(m+1)
th

 frog will go to 1
st
memplex and so on. 

Within each memplex best and worst frogs according to 

their fitness are termed as xb and xw. Also, the best frog in 

entire population is termed as xg. In the evolution process 

only, the worst frog changes its position according to 

following equations [4] 

Change in frog position S = rand().(xb-xw) 

New position of worst frogxw= xw+SSmax≥S≥-Smax 

Where rand() is a rand number between 0 and 1; and Smax 

is the maximum allowed change in a frog‟s position. 

If fitness of new frog is better than the old frog then the 

worst frog is replaced with the new one, else the same 

equations is applied with xbreplaced by xg. Even after 

applying above equations if solution is not improved then 

the worst frog is replaced by a randomly generated new 

frog. The calculations then continue for aspecific number 

of iterations. After this, all the memplexes are combined 

together and a new set of memplexes created after 

reshuffling. Process continues till the convergence criteria 

are not met. 

In modified version, chaotic numbers in place of random 

numbers are used to change the frog position. 

 

 
 

Fig.3 The flowchart of SFLA algorithm 

 

2.4Imperialistic competitive algorithm (ICA) 

 
Like other evolutionary algorithm ICA starts with an 

initial population of potential solutions called countries of 

the world. Some of the best countries in the population are 

selected as imperialists and rest form the colonies of these 

imperialists. All the colonies are distributed among 

imperialists according to their power. More the power of 

an imperialist more number of colonies it possess. After 

dividing all the colonies among imperialists these colonies 
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start moving towards their relevant imperialist. Total 

power of an empire depends on both the power of the 

imperialist and power of its colonies. Thereafter an 

imperialistic competition begins amongst the empires. 

During competition any empire with no colony in it is 

eliminated from the competition. The movement of 

colonies towards their imperialist and competition among 

empires hopefully cause all the countries to converge to a 

state in which there exists only one empire in the world 

with all the countries having same power as of its 

imperialist [5]. 

In ICA an initial population of p countries is generated. 

Each country xis a D dimensional vector and is a potential 

solution to the problem. Out of these pcountries𝑁𝑖𝑚𝑝  of 

the most powerful countries are selected as the 

imperialist. The remaining countries 𝑁𝑐𝑜𝑙 will be colonies 

of the empires. 

Initially colonies are divided among imperialists 

according to their power. Power of each imperialist is 

calculated according to the cost of the country the term 

cost is similar to the term fitness as used in other EAs. 

Normalized cost of an imperialist Cn=cn-max{ci} where cn 

is cost(fitness) of n
th

 imperialist. 

Normalized power of each imperialist is defined by 

𝑝𝑛 =  
𝐶𝑛

 𝐶𝑖
 , more the power of an imperialist more 

number of colonies will be allotted to it. 

Initial number of colonies to n
th

 empire will be 

𝑁𝐶𝑛 = 𝑟𝑜𝑢𝑛𝑑(𝑝𝑛 . 𝑁𝑐𝑜𝑙 ) 

out of 𝑁𝑐𝑜𝑙  ,the 𝑁𝐶𝑛colonies are selected randomly and 

allotted to the nth empire.  

In the second stage, colonies move towards their 

imperialist. A country𝑥𝑖
𝑛  of n

th
 imperialist move towards 

its imperialist according to following equations [5] 

𝑑 = 𝑥𝑖𝑚𝑝
𝑛 − 𝑥𝑖

𝑛𝑑is a vector representing distance between 

the n
th

 imperialist and i
th

 country of n
th

imperialist 

New position of the country will be given by 

𝑥𝑖
𝑛 = 𝑥𝑖

𝑛 + 𝑟𝑎𝑛𝑑. 𝛽. 𝑑                (3) 

Where rand is a random number between [0,1] and 𝛽is a 

number greater than 1. In this equation 𝑥𝑖
𝑛  and 𝑑 both are 

D dimensional vector, multiplying a single random 

number to 𝑑 causes movement of colony towards 

imperialist along the line joining colony to imperialist. To 

search different points around the imperialist a random 

amount of deviation to the 

direction of movement is given. This is done by 

multiplying different random numbers to different 

dimensions of 𝑑 [10]. 

If cost of the colony so modified is higher than its 

imperialist then both will exchange their position in the 

empire. 

Total power of an empire is calculated according to the 

total cost of an empire which is defined as 

𝑇𝐶𝑛 = 𝐶𝑛 ,𝑖𝑚𝑝 + 𝜉. 𝑚𝑒𝑎𝑛{𝐶𝑖
𝑛}Where𝜉 is a positive 

number which is considered to be less than one. 

In imperialistic competition the weakest colony of the 

weakest empire is allotted to another empire. This 

allotment is done based on the total power of the empires. 

Each empire has a probability of getting the colony. 

Probability of each empire is calculated based on the 

normalized total cost of the empire given by 

𝑁𝑇𝐶𝑛 = 𝑇𝐶𝑛 − max{𝑇𝐶𝑖}where𝑇𝐶𝑛  is the total cost of 

the nth empire. Having the normalized total cost, the 

possession probability of each empire is given by 

𝑝𝑝𝑜𝑠 =  
𝑁𝑇𝐶𝑛

 𝑁𝑇𝐶𝑖
 now form a vector containing possession 

probability of all the empires. 

𝑃 = [𝑝𝑝𝑜𝑠 1 , 𝑝𝑝𝑜𝑠 2 , 𝑝𝑝𝑜𝑠 3 … 𝑝𝑝𝑜𝑠𝑁𝑖𝑚𝑝 ] 

Then create a vector of random numbers in a range [0,1] 

having a size of 𝑃. 

𝑅 = [𝑟1 , 𝑟2 , 𝑟3 , … … … . 𝑟𝑁𝑖𝑚𝑝 ] 

Then calculate 

𝑃𝑅𝑂𝐵 = 𝑃 − 𝑅 
Referring to vector𝑃𝑅𝑂𝐵, the weakest colony will be 

given to an empire whose relevant index in 𝑃𝑅𝑂𝐵 is 

maximum. 

After imperialistic competition if any empire has no 

colony then the empire is eliminated and its imperialist is 

allotted to an empire with highest power. 

Iterations will be terminated when only one empire 

remains or if cost of all empires becomes same. 

In chaotic version, chaotic number in place of random 

number is used in equation (3)[11]. 

 



 

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION   
(ISSN 2455-5061)  Vol. – 4, Page-36-47, Year-2019 

  
   
 

41 
 

 

Fig.4The flowchart of ICA algorithm 

 

Settings: 
Each algorithm has its own parameters that affect its 

performance in terms of solution quality and processing 

time. To obtain the best solutions from each algorithm 

initial settings are made according to previously reported 

values in the literature [2, 3, 4, 5]. Then these values are 

altered to get best solutions possible by these algorithms. 

 

In all the algorithms random numbers are generated using 

same seed. All problems are of minimization type 

therefore fitness value is equal to reciprocal of objective 

function value. Maximum number of cycles used for any 

algorithm is 80000. During the iterations if any 

 

solution generated is violating the bound constraints then 

it is reset to its nearest boundary [12]. 

In modified version of each method chaotic numbers are 

generated using the formula [9] 

𝑁𝑘+1 = 𝜇. 𝑁𝑘 . (1 − 𝑁𝑘) 

in this paper value of 𝜇 is taken as 0.4 and initial chaotic 

number 𝑁0 is taken as 0.1. 

 

PSO settings[2,13]: 

Cognitive and social components (φpandφgin (2))are 

constants that can be used to change the weighting 

between personal and population experience, respectively. 

In our experiments value of φp and φg are set to in 

between 1.4 to 2. Inertia weight ω was taken in between 

0.8 to1.2. Initial population size is taken as 20. Maximum 

velocity is clamped to 20% of the total range of velocity. 

ABC setting[3]: 

Size of initial population is taken as 25. Parameter limit is 

the maximum number of cycles for which a food source. 

If a food source does not improve in a predetermined 

number of cycles then it is abandoned. This number of 

cycles is called limit and is set to SN*D, where SN is 

number of food sources and D is dimension of the 

problem. 

FLA setting[4]: 

Size of initial population is taken as 200. Number of 

memplexes is equal to 20. Number of iterations within 

each memplex is taken as 10. Maximum allowed change 

in the frog position Smax is taken about 25% of the range 

of frog position. 

ICA setting[5]: 

Number of countries is taken as 80. Number of 

imperialists is either 8 or 9. Value of 𝛽is taken as 2 and 

value of 𝜉 is taken as 0.1. 

 

Benchmark functions: 

To compare the performance of four EAs, 25 benchmark 

problems for continuous optimization are used[3]. A 

description ofthese test problems is given in the table 1. 

 

 

3.Results and discussion. 
the results obtained by solving these test problems are 

summarized in tables 2,3 and 4. The tests are performed 

to check whether actual solution is obtained within 

specified number of iterations. Also processing time for 

each algorithm is calculated to measure the speed of each 

EA, because the number of generations in each 
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evolutionary cycle is different from one algorithm to 

another. 

 

Table 1: Benchmark functions used in experiments 

D:dimension,C:characteristics,U:unimodal,M:multimodal,

S:separable,N:non-separable 

 
PSO with other algorithms: results obtained shows that 

PSO gives fairly good solutions to the almost all problems 

except for functions f16,f17,f19, f20, f21 and f22  where it is 

failed to reach optimum solution, solution obtained for f17 

andf22 is better than other EAs. Out of these functions 

f16,f21 are unimodal no separable while other functions are 

multimodal separable functions. Main advantage of PSO 

algorithm is its simplicity and it reaches to the solution 

quickly as compared to other algorithms. Drawback of 

this algorithm is that it is verysensitive to its control 

parameters even a slight variation in any of these 

parameters may prevent the algorithm to reach the actual 

solution. It is also observed that same parameter setting 

cannot work for all problems. 

 

ABC with other algorithms: ABC algorithm is unable to 

reach solution in functions f17,f19 and f22 but it reached to 

the exact solution of function f20 and fairly good solution 

to f16 andf21 . All other EAs are unable to reach the 

solution of these three functions. Main disadvantage of 

ABC algorithm is that it takes more CPU time to reach the 

solution. 

FLA with other algorithms: basic FLA algorithm do not 

give as good solution as compared to PSO and ABC. It is 

unable to reach solution in functions f5, f16, f17, f20, f21, f22, 

f23,f24. In case of function f19 it gives best solution as 

compared to all other EAs. 

ICA with other algorithms: similar to FLA it also does not 

give good solutions as compared to PSO and ABC. 

Advantage of this algorithm is that it reaches to optimum 

quickly. In less number of iterations one can know 

whether optimum value can be obtained or not. 

Effect of using chaotic numbers in place of random 

numbers is also studied. Chaotic numbers can be used in 

initializing the population and/or movement of population 

towards optimum. Conducting large numbers of test 

indicate that using chaotic numbers in movement of 

population with initialization of population by random 

numbers gives better result. 

PSO with chaotic number gives better result in almost all 

problems. PSO with chaotic number reaches to near 

optimum value in case of functions f20, f21. For these two 

functions basic PSO unable to reach near optimum value. 

ABC with chaotic numbers gives almost same result as 

given by the ABC with random numbers but for some 

functions it reaches to optimum value quickly as 

compared to ABC with random numbers. 

In case of FLA and ICA not much better effect is 

observed in using chaotic numbers in place of random 

numbers. 

In this work three representative cases of function f1,f2,f18 

are taken. These functions are selected because they are 

two dimensional functions and therefore, they can be 

represented by surface plots. Also, all EAs in study 

reached to the final solution in each case. Figs 5,8,11 

represent the surface plot of f1,f2,f18 functions respectively. 

Figs 6,9,12 shows the convergence curves for these three 

functions. Figs 7,10,13 shows CPU time taken by these 

algorithms to reach final solution. Comparing figs 6 and 7 

shows that FLA and ICA reached to the solutions before 

Funct FunctionName Fuction D C Range 

f1 Easom 𝑓 𝑥 = − cos 𝑥1 cos 𝑥2 exp − 𝑥1 − 𝜋 2 −  𝑥2 − 𝜋 2  2 UN [−100,100] 

f2 Matyas 𝑓 𝑥 = 0.26 𝑥1
2 + 𝑥2

2 − 0.48𝑥1𝑥2 2 UN [−10,10]     

f3 Quartic 𝑓 𝑥 =  𝑖𝑥𝑖
4

𝐷

𝑖=1
+ 𝑟𝑎𝑛𝑑𝑜𝑚 0,1  

30 US [−1.28,1.28] 

f4 sphere 𝑓 𝑥 =  𝑥𝑖
2

𝐷

𝑖=1
 

30 US [−100,100] 

f5 StepInt 𝑓 𝑥 = 25 +  𝑥𝑖

𝐷

𝑖=1
 

5 US [−5.12,5.12] 

f6 Step 𝑓 𝑥 =  ([𝑥𝑖 + 5])2
𝐷

𝑖=1
 

30 US [−100,100] 

f7 SumSquares 𝑓 𝑥 =  𝑖𝑥𝑖
2

𝐷

𝑖=1
 

30 US [−10,10]     

f8 Trid10 𝑓 𝑥 =  (𝑥𝑖 − 1)2
𝐷

𝑖=1
−  𝑥𝑖𝑥𝑖−1

𝐷

𝑖=2
 

10 UN [−𝐷2 , 𝐷2] 

f9 Trid6 𝑓 𝑥 =  (𝑥𝑖 − 1)2
𝐷

𝑖=1
−  𝑥𝑖𝑥𝑖−1

𝐷

𝑖=2
 

6 UN [−𝐷2 , 𝐷2] 

f10 Zakharov 𝑓 𝑥 =  𝑥𝑖
2

𝐷

𝑖=1
+ ( 0.5𝑖𝑥𝑖

𝐷

𝑖=1
)2 + ( 0.5𝑖𝑥𝑖

𝐷

𝑖=1
)4 

10 UN [−5,10] 

f11 Bohchevsky1 𝑓 𝑥 = 𝑥1
2 + 2𝑥2

2 − 0.3 cos 3𝜋𝑥1 − 0.4 cos 4𝜋𝑥2 + 0.7 2 MS [−100,100] 

f12 Bohchevsky2 𝑓 𝑥 = 𝑥1
2 + 2𝑥2

2 − 0.3 cos 3𝜋𝑥1  4𝜋𝑥2 + 0.3 2 MN [−100,100] 

f13 Bohchevsky3 𝑓 𝑥 = 𝑥1
2 + 2𝑥2

2 − 0.3 cos( 3𝜋𝑥1 +  4𝜋𝑥2 ) + 0.3 2 MN [−100,100] 

f14 CamelBack 𝑓 𝑥 = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 
2 MN [−5,5] 

f15 Colville 

𝑓 𝑥 = 100(𝑥1
2 − 𝑥2)2 + (𝑥1 − 1)2 + (𝑥3 − 1)2 + 90(𝑥3

2 − 𝑥4)2

+ 10.1  𝑥2 − 1 2 +  𝑥4 − 1 2 
+ 19.8 𝑥2 − 1  𝑥4 − 1  

4 UN [−10,10]     

f16 DixonPrice 𝑓 𝑥 = (𝑥𝑖 − 1)2 +  𝑖
𝐷

𝑖=2
(2𝑥𝑖

2 − 𝑥𝑖−1)2 
30 UN [−10,10]     

f17 Michalewicz10 𝑓 𝑥 = −  sin
𝐷

𝑖=1

 𝑥𝑖 (sin 
𝑖𝑥𝑖

2

𝜋
 )20 

10 MS [0, 𝜋] 

f18 Michalewicz2 𝑓 𝑥 = −  sin
𝐷

𝑖=1

 𝑥𝑖 (sin 
𝑖𝑥𝑖

2

𝜋
 )20 

2 MS [0, 𝜋] 

f19 Michalewicz5 𝑓 𝑥 = −  sin
𝐷

𝑖=1

 𝑥𝑖 (sin 
𝑖𝑥𝑖

2

𝜋
 )20 

5 MS [0, 𝜋] 

f20 Rastrigin 𝑓 𝑥 =  [𝑥𝑖
2

𝐷

𝑖=1
− 10 cos 2𝜋𝑥𝑖 + 10] 

30 MS [−5.12,5.12] 

f21 Rosenbrock 𝑓 𝑥 =  [100 
𝐷−1

𝑖=1
(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)2] 
30 UN [−30,30]     

f22 Schwefel 𝑓 𝑥 =  −
𝐷

𝑖=1
𝑥𝑖 sin    𝑥𝑖   

30 MS [−500,500] 

f23 Akley 

𝑓 𝑥 = −20 exp  −0.2 
1

𝑛
 𝑥𝑖

2
𝑛

𝑖=1
 

− exp(
1

𝑛
 cos(2𝜋𝑥𝑖)) + 20 + 𝑒

𝑛

𝑖=1
 

30 MN [−32,32]     

f24 Griewank 𝑓 𝑥 = 1 +
1

4000
 𝑥𝑖

2 −  cos(
𝑥

 𝑖
)

𝑛

𝑖=1

𝑛

𝑖=1
 

30 MN [−600,600] 

f25 Powell 
𝑓 𝑥 =  (𝑥4𝑖−3 + 10𝑥4𝑖−2)2 + 5(𝑥4𝑖−1 − 𝑥4𝑖)

2
𝑛/4

𝑖=1

+ (𝑥4𝑖−2 − 𝑥4𝑖−1)4 + 10(𝑥4𝑖−3 − 𝑥4𝑖)
4 

24 UN [−4,5] 
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10 iterations and PSO took about 40 iterations but time 

taken to reach final solution by PSO is less than time 

taken by FLA and ICA. Same is the case with other 

functions. Which shows PSO is computationally less 

expensive as compared to other algorithms. 

Figs 14 and 15 shows the surface plot of functionsf20 and 

f21 with two variables respectively. Surface plots of these 

functions shows how complex these functions are. 

 

Table 2: Function values obtained with random numbers 

 
 

 

 

 

 

 

 

 

 

 

Table 3: Function values obtained with chaotic numbers 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Funct 
Actual 

value 
PSO ABC FLA ICA 

f1 -1 -0.999803974 -0.996252324 -1 -1 

f2 0 3.02E-12 2.37E-05 2.05E-17 1.62E-96 

f3 0 1.94E-06 0.032402517 0.00096448 0.30682399 

f4 0 0.00E+00 2.31E-10 1.20E+02 1.50E+02 

f5 -0.6 -0.6 -0.6 3.937436149 -0.6 

f6 0 8.79E-07 1.44E-05 1.02E+00 9.22E-01 

f7 0 0 2.82E-08 5.01E+00 5.60E+01 

f8 -210 -209.9999953 -208.3080852 -161.6337868 -208.7890396 

f9 -50 -50 -49.68230577 -48.14794998 -49.99994878 

f10 0 6.08E-08 1.60E-05 4.05E-01 2.88E-08 

f11 0 0 0 0 0 

f12 0 0 0 0 0 

f13 0 0 5.00E-16 0 0 

f14 -1.0316 -1.031628453 -1.031597588 -1.031628453 -1.031628453 

f15 0 1.92E-09 0.03580093 0.094817296 0.155896041 

f16 0 3.85E-05 1.41E-15 1.50E+00 3.86E+02 

f17 -9.6602 -8.868615341 -4.765984836 -7.455034029 -8.604502165 

f18 -1.8013 -1.801302254 -1.7988017 -1.80130341 -1.80130341 

f19 -4.6877 -4.619018042 -3.45008875 -4.594201266 -4.687658179 

f20 0 0.000205978 0 8.600078383 179.147263 

f21 0 0.054097263 0.000381093 2755.171552 14887.80809 

f22 -12570 -10185.54554 -4120.914826 -5525.188892 -7832.116382 

f23 0 3.02E-05 3.11E-14 4.96E+00 1.82E+01 

f24 0 0.000240859 0 6.150562692 1.6339931 

f25 0 0 0.001155778 0.741950855 0.972720905 
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Table 4: CPU Time required to solve the functions 

 

 
 

 

 

Fig.5 Surface plot of Easomfunction(f1) 

 

 
Fig.6 Convergence curve for Easomfunction(f1) 

 

 
 

Fig.7 Time taken to reach solution of Easomfunction(f1) 

 

 

Funct 
RANDOM NUMBERS CHAOTIC NUMBERS 

PSO ABC FLA ICA PSO ABC FLA ICA 

f1 0.016502 33.83684 0.893104 0.096373 0.066048 50.53339 0.855622 0.097648 

f2 0.019879 0.867564 0.811713 0.161606 0.013653 1.672332 0.795861 0.287446 

f3 68.5021 60.69918 9.187863 0.318333 6.842619 60.48162 9.49641 0.344658 

f4 6.05692 1.120752 7.770823 0.246303 0.021853 1.116779 8.149328 0.301078 

f5 0.0114 0.113665 1.389757 0.111874 0.011119 0.077554 1.449402 0.110728 

f6 8.490175 1.128224 15.56196 0.261273 4.043949 1.119945 16.09934 0.290571 

f7 25.33892 1.824721 15.31768 0.284447 0.136936 0.925001 15.82429 0.274917 

f8 31.41636 124.9622 70.79752 0.21464 21.09176 17.83803 72.96034 0.57861 

f9 0.362898 142.2193 13.95108 0.200398 0.296376 17.5011 14.41284 0.438329 

f10 50.38727 37.78305 73.10906 0.427847 11.38864 93.43288 75.61987 0.836852 

f11 0.028142 6.062968 0.825795 0.136575 0.011914 0.646761 0.833336 0.166509 

f12 0.027257 6.0807 0.831346 0.134025 0.011009 0.643936 0.828913 0.16151 

f13 0.027101 6.025627 0.821557 0.161276 0.011028 6.094848 0.821313 0.189372 

f14 0.136366 12.5519 0.842671 0.187172 0.132276 62.51955 0.831682 0.215261 

f15 0.140751 58.80686 0.7416 0.206682 7.341341 59.77813 0.759008 0.6792 

f16 55.37082 6.225945 15.76635 0.296448 55.37811 6.215984 79.45357 0.276883 

f17 42.22675 68.53247 7.569207 0.196749 67.93186 68.68522 7.605441 0.222201 

f18 0.289486 64.55791 0.856337 0.171559 0.289207 64.47482 0.844151 0.186828 

f19 24.38759 65.40774 0.802471 0.174577 24.27668 65.69026 0.811212 0.16401 

f20 107.1953 4.025435 77.89875 0.246993 104.7837 3.956159 80.22436 1.269086 

f21 29.95885 37.27963 7.818207 0.353399 29.75106 61.81118 7.999381 0.301325 

f22 20.51256 72.62486 8.307441 0.248584 20.83316 71.54258 8.489359 1.367079 

f23 42.45895 6.774194 16.05082 0.101525 42.66888 6.801612 1.752358 0.286846 

f24 41.71973 7.053963 81.65986 0.32731 27.70661 7.130018 83.14513 1.293629 

f25 0.493707 90.4273 15.59134 0.42767 0.495026 65.26951 15.86635 0.314041 
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Fig.8 Surface plot of Matyasfunction(f2) 

 

 

 
 

Fig.9Convergence curve for Matyasfunction(f2) 

 

 

 
 

Fig.10Time taken to reach solution of Matyasfunction(f2) 
 

Fig.11Surface plot of Michalewicz2 function(f18) 

 
 

Fig.11Surface plot of Michalewicz2 function(f18) 
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Fig.12Convergence curve for Michalewicz2 function(f18) 
 

 
 

Fig.13Time taken to reach solution of Michalewicz2 

function(f18) 
 

 
 

Fig.14Surface plot of Rastrigin function for two variables 
 

 

 

 

 
 

Fig.15Surface plot of Rosenbrock function with two 

variables 
 

4. CONCLUSION 

In this paper a comparison among four different EAs were 

presented. A brief       description of each method along 

with flow chart is presented to facilitate their 

implementation. Programs are written in MATLAB to 

implement each algorithm. Twenty-five continuous 

optimization problems were solved using these 

algorithms. To explore the effect of using chaotic number 

inplace of random number, modificationswere done in 

these algorithms. Comparison indicates that a single 

technique cannot be used to get solution of all types of 
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problems. PSO with chaotic number gives solution to 

almost all problems but parameter setting required to get 

these solutions are different for different problems. For a 

new problem one has to solve same problem with 

different settings to get reasonable solution. 
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