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Abstract

This paper represents, a comparison between four Evolutionary Algorithms (EAs) i.e. Particle swarm optimization(PSO),
Artificial Bee Colony algorithm(ABC), Shuffled frog leaping algorithm(SFL) and Imperialistic competitive algorithm (ICA)
for solving optimization problems is made. These techniques can be useful to solve complicated real-world problems. Testing
of these algorithms with standard problems is necessary to check their effectiveness. The basic versions of four algorithms
are implemented in MATLAB and are applied to twenty-five unconstrained continuous optimization problems available in

literature.

Index Terms: EAs, Optimization, PSO, ABC, SFL, ICA

1. Introduction

In computational science, optimization refers to the
selection of a best element from some set of available
alternatives. In the simplest case, this means solving
problems in which one seeks to maximize (or to
minimize) a real function by systematically choosing the
values of real or integer variables from within an allowed
set. Evolutionary optimization techniques can be used for
getting near optimal solutions of difficult optimization
problems. There are different types of Evolutionary
techniques in use, natural evolutionary techniques e.g.
GADE etc., swarm intelligence-based techniques e.g.
PSO,ABC etc.andcultural  algorithms e.g. ICA.
Evolutionary algorithms are stochastic search methods
that mimic the metaphor of natural biological evolution
and/or the social or cultural behaviour of species.
Researchers have developed computational systems that
mimic the efficient behaviour of species such as birds,
bees, and frogs as a means to seek faster and more robust
solutions to complex optimization problems. The first
evolutionary based technique introduced in the literature
was the genetic algorithm. GAs was developed based on
the Darwinian principle of the ‘survival of the fittest’ and
the natural process of evolution through reproduction [1].
A popular swarm intelligence-based algorithm is the
particle swarm optimization algorithm which was
developed by Eberhart and Kennedy in 1995[2]. It models
the social behaviour of bird flocking or fish schooling.
Another swarm intelligence-based algorithm is artificial
bee colony algorithm proposed by Karaboga in 2005[3],
which mimic the foraging behaviour of a honeybee
colony. Shuffled Frog Leaping algorithm developed by
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Eusuff and Lansey in 2003[4] is a mementicmetaheuristic
based on the frog behaviour. In the SFL, the population
consists of a set offrogs (solutions) that is partitioned into
subsets referred to as memeplexes. The different
memeplexes are considered as different cultures of frogs,
each performing a local search. Within each memeplex,
the individual frogs hold ideas, that can be influenced by
the ideas of other frogs, and evolve through a process of
mementic evolution. After a defined number of mementic
evolution steps, ideas are passed among memeplexes in a
shuffling process. The Imperialist Competitive Algorithm
proposed by Atashpazet al. [5]is based on a socio-
politically inspired optimization strategy. In this paper,
the four EAs are reviewed and a flowchart for each
algorithm is presented to facilitate its implementation.
Performance comparison among the four algorithms is
then presented. The standard versions of these techniques
use pseudo-random numbers which cannot ensure the
optimization’s ergodicity in solution space because they
are absolutely random [6]therefore, a slight modification
is done in each of the mentioned EAs by employing the
chaotic operator (with Logistic map) in place of random
number generator. Chaos method has the particular
characteristics, such as the randomicity and ergodicity,
which can enhance the diversity of the particles and
actuate the particles to move out from the local near-
optimal solutions[7].Comparison is also made between
these modified EAs.

In each of these EAs a population of candidate solutions
is generated randomly. These populations are called with

different names in different techniques.
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2. Evolutionary algorithms(EAs):

2.1 Particle Swarm Optimization(PSO)

PSO optimizes a problem by having a population of
candidate solutions, here dubbed particles, and moving
these particles around in the search-space according to
simple mathematical formulae over the particle's position
and velocity. Each particle's movement is influenced by
its local best-known position called pBest and the best-
known position of the entire swarm called gBest. In this
way it is expected that swarm moves toward the best
solution[2].

The position of a particle refers to a possible solution of
the function to be optimized, which is updated in each
iteration using formula 2. Here velocity of particle in each
iteration is calculated using formula 1. If R is range of
vector x then velocity is normally initialized randomly in
the range [-R, +R].

Vi= o Vi + ¢plp (pBesti-xi) + ogry (gBest-

Xi=XitVi (2)

The parameter o is called the inertia weight and controls
the magnitude of the old velocity in the calculation of the
newvelocity, whereas ¢ and ¢4 determine the significance
of pBestandgBestrespectively,r, aq rgare the random
numbers generated in the range [0,1]. Furthermore, v; at
any iteration is constrained by the parameter v, which is
normally taken about 20% of the range of v. If in any
iteration position of the particle crosses the boundary then
velocity is adjusted so that particles position reaches to
the boundary which is called clamping of velocity.

In the modified version ryandrgare the chaotic numbersin
the range [0,1].
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Fig.1 The flowchart of PSO algorithm

2.2Artificial Bee Colony algorithm (ABC)

In ABC algorithm, the position of a food source
represents a possible solution to the optimization problem.
At initialization, a set of food source positions are
randomly produced. The nectar amount retrievable from
food source corresponds to the quality of the solution
(fitness value) represented by that food source. Each cycle
of the search consists of three steps after initialization
stage: placing the employed bees onto the food sources
and calculating their nectar amounts; placing the
onlookers-onto the food sources and calculating the nectar
amounts and determining the scout bees and placing them
onto the randomly determined food sources.

Each employed bee searches a nearby food source and
checks its nectar amount, if new food source is having
higher nectar(better fitness) then it forgets the previous
food source and remembers only new one. At the second
step, an onlooker prefers a food source area depending on
the nectar information distributed by the employed bees.
As the nectar amount of a food source increases, the
probability of that foodsource chosen also increases. After
selecting a food source onlooker bee searches, a nearby
source and checks itsnectar amount, if new foodsource is
having higher nectar(better fitness) then it forgets the
previous food source and remembers only new one.
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Searching of nearby food source by employed and
onlooker bees is done according to following equation[3].

vy = x4 Oy (x5 — X))
Wherei, k € {1,2 ..... NS}NSisnumberof foodsources

Andj €

{1,2.... D}Disdimensionoftheproblem.kandjare
randomly chosen indexes. Although k is determined
randomly it should be different from i. @;is a random
number between [1,-1]. If a parameter value produced by
this operation exceeds its predetermined limit, the
parameter can be set to an acceptable value. Normally the
value of the parameter exceeding its limit is set to its limit
value (clamping).

Selection of a food source by an onlooker bee is done on

the basis of probability value associated with that food
source,p; calculated by the following expression [3].

fit;
bi = NS -
i—1 fit;
wherefit; is the fitness of i*" food source.
For minimization type problems fit;=1/(objective

function value for i**food source).

In this work, after calculating probabilities selection of
food source is done on the basis of Roulette Wheel
Selection.

The food source which is abandoned by the bees is
replaced with a new food source by the scouts. In ABC, if
a position cannot be improved further through a
predetermined number of cycles, then that food source is
assumed to be abandoned. Suppose a food source x; is
abandoned, then the scout discovers a new food source
randomly to replace the x;.

In the modified version chaotic humber can be used to
generate initial population, to search neighbouring food
source by employed and onlooker bees, and to discover a
new food source by scout bees. In this work chaotic
numbers are used only in searching of neighbourhood
solutions.
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Fig.2 The flowchart of ABC algorithm

2.3Shuffled frog leaping algorithm(SFL)

In the SFL, the population consists of a set of frogs
(solutions) that is partitioned into subsets referred to as
memplexes. The different memplexes are considered as
different cultures of frogs, each performing a local search.
Within each memplex, the individual frogs hold ideas,
that can be influenced by the ideas of other frogs, and
evolve through a process of mementic evolution. After a
defined number of mementic evolution steps, ideas are
passed among memplexes in a shuffling process [8]. The
local search and the shuffling processes continue until
defined convergence criteria are satisfied [4].

In SFL an initial population of p frogs is created
randomly. Each frog x is a D dimensional vector and is a
potential solution to the problem. Afterwards fitness value
of each frog is calculated and frogs are sorted in
descending order of their fitness. Then the entire
population is divided into mmemplexes with n=p/m frogs
in each memplex. In this process first frog goes to first
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memplex, second to second and m to m"memplex then [ Initializs papulatian o ]
(m+1)™ frog will go to 1¥memplex and so on. )

Within each memplex best and worst frogs according to 44 Sart it accarding tatheir fitness value ]
their fitness are termed as x, and x,,. Also, the best frog in v

entire population is termed as Xg. In the evolution process [ Partition s intam memplexes ]
only, the worst frog changes its position according to !

following equations [4] [ mitiatzex, whhbestiog |
Change in frog position S = rand().(Xp-Xw) v

New position of worst frogX,= Xu+SSmaxc>S>-Smax [ Far zach memples ]

Where rand() is a rand number between 0 and 1; and Spax
is the maximum allowed change in a frog’s position.

If fitness of new frog is better than the old frog then the
worst frog is replaced with the new one, else the same
equations is applied with xpreplaced by x,. Even after
applying above equations if solution is not improved then
the worst frog is replaced by a randomly generated new
frog. The calculations then continue for aspecific number
of iterations. After this, all the memplexes are combined
together and a new set of memplexes created after
reshuffling. Process continues till the convergence criteria
are not met.

In modified version, chaotic numbers in place of random
numbers are used to change the frog position.

Apply equations 1 and 2 byrepladng
by ¥,

—

[ Generate a newfrog randomby Replacethewnrstfrog ]

Is lter=maxker
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Fig.3 The flowchart of SFLA algorithm
2.4lmperialistic competitive algorithm (ICA)

Like other evolutionary algorithm ICA starts with an
initial population of potential solutions called countries of
the world. Some of the best countries in the population are
selected as imperialists and rest form the colonies of these
imperialists. All the colonies are distributed among
imperialists according to their power. More the power of
an imperialist more number of colonies it possess. After
dividing all the colonies among imperialists these colonies

39



CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION

(ISSN 2455-5061) Vol. - 4, Page-36-47, Year-2019

start moving towards their relevant imperialist. Total
power of an empire depends on both the power of the
imperialist and power of its colonies. Thereafter an
imperialistic competition begins amongst the empires.
During competition any empire with no colony in it is
eliminated from the competition. The movement of
colonies towards their imperialist and competition among
empires hopefully cause all the countries to converge to a
state in which there exists only one empire in the world
with all the countries having same power as of its
imperialist [5].

In ICA an initial population of p countries is generated.
Each country xis a D dimensional vector and is a potential
solution to the problem. Out of these pcountriesN;,, of
the most powerful countries are selected as the
imperialist. The remaining countries N, will be colonies
of the empires.

Initially colonies are divided among imperialists
according to their power. Power of each imperialist is
calculated according to the cost of the country the term
cost is similar to the term fitness as used in other EAs.
Normalized cost of an imperialist C,=c,-max{c;} where c,
is cost(fitness) of n™ imperialist.

Normalized power of each imperialist is defined by

c, . .
Pn = |5¢|, more the power of an imperialist more
i

number of colonies will be allotted to it.
Initial number of colonies to n empire will be

NC,, = round(p,-N,,;)
out of N.,; ,the NC,colonies are selected randomly and
allotted to the nth empire.
In the second stage, colonies move towards their
imperialist. A countryx]* of n" imperialist move towards
its imperialist according to following equations [5]
d = xjn, — x;'dis a vector representing distance between
the n™ imperialist and i"" country of n"imperialist
New position of the country will be given by
x' =x'+rand.B.d ?3)
Where rand is a random number between [0,1] and Bis a
number greater than 1. In this equation x]* and d both are
D dimensional vector, multiplying a single random
number to d causes movement of colony towards
imperialist along the line joining colony to imperialist. To
search different points around the imperialist a random
amount of deviation to the
direction of movement is given. This is done by
multiplying different random numbers to different
dimensions of d [10].
If cost of the colony so modified is higher than its
imperialist then both will exchange their position in the
empire.
Total power of an empire is calculated according to the
total cost of an empire which is defined as
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TC, = Cyimp + & mean{C'}Where§ is a
number which is considered to be less than one.
In imperialistic competition the weakest colony of the
weakest empire is allotted to another empire. This
allotment is done based on the total power of the empires.
Each empire has a probability of getting the colony.
Probability of each empire is calculated based on the
normalized total cost of the empire given by

NTC, = TC, — max{TC;}whereTC, is the total cost of
the nth empire. Having the normalized total cost, the
possession probability of each empire is given by

NTC, . . .
Drgs = |ENTC now form a vector containing possession
i

probability of all the empires.
P = [ppos 1/ pposZ' ppos3 '"pposNimp ]
Then create a vector of random numbers in a range [0,1]
having a size of P.
R = [r,1y,13, ... -
Then calculate

positive

e Timp |

PROB =P —R
Referring to vectorPROB, the weakest colony will be
given to an empire whose relevant index in PROB is
maximum.
After imperialistic competition if any empire has no
colony then the empire is eliminated and its imperialist is
allotted to an empire with highest power.
Iterations will be terminated when only one empire
remains or if cost of all empires becomes same.
In chaotic version, chaotic number in place of random
number is used in equation (3)[11].
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Fig.4The flowchart of ICA algorithm

Settings:

Each algorithm has its own parameters that affect its
performance in terms of solution quality and processing
time. To obtain the best solutions from each algorithm
initial settings are made according to previously reported
values in the literature [2, 3, 4, 5]. Then these values are
altered to get best solutions possible by these algorithms.
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In all the algorithms random numbers are generated using
same seed. All problems are of minimization type
therefore fitness value is equal to reciprocal of objective
function value. Maximum number of cycles used for any
algorithm is 80000. During the iterations if any

solution generated is violating the bound constraints then
it is reset to its nearest boundary [12].
In modified version of each method chaotic numbers are
generated using the formula [9]

Niy1 = pNp. (1= Np)
in this paper value of u is taken as 0.4 and initial chaotic
number N, is taken as 0.1.

PSO settings[2,13]:

Cognitive and social components (gp,andgpgin (2))are
constants that can be used to change the weighting
between personal and population experience, respectively.
In our experiments value of ¢, and ¢, are set to in
between 1.4 to 2. Inertia weight o was taken in between
0.8 tol1.2. Initial population size is taken as 20. Maximum
velocity is clamped to 20% of the total range of velocity.
ABC setting[3]:

Size of initial population is taken as 25. Parameter limit is
the maximum number of cycles for which a food source.
If a food source does not improve in a predetermined
number of cycles then it is abandoned. This number of
cycles is called limit and is set to SN*D, where SN is
number of food sources and D is dimension of the
problem.

FLA setting[4]:

Size of initial population is taken as 200. Number of
memplexes is equal to 20. Number of iterations within
each memplex is taken as 10. Maximum allowed change
in the frog position Sy is taken about 25% of the range
of frog position.

ICA setting[5]:

Number of countries is taken as 80. Number of
imperialists is either 8 or 9. Value of Bis taken as 2 and
value of ¢ is taken as 0.1.

Benchmark functions:

To compare the performance of four EAs, 25 benchmark
problems for continuous optimization are used[3]. A
description ofthese test problems is given in the table 1.

3.Results and discussion.

the results obtained by solving these test problems are
summarized in tables 2,3 and 4. The tests are performed
to check whether actual solution is obtained within
specified number of iterations. Also processing time for
each algorithm is calculated to measure the speed of each
EA, because the number of generations in each



CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION

(ISSN 2455-5061) Vol. - 4, Page-36-47, Year-2019

evolutionary cycle is different from one algorithm to parameters may prevent the algorithm to reach the actual

another. solution. It is also observed that same parameter setting
cannot work for all problems.

Table 1: Benchmark functions used in experiments

D:dimension,C:characteristics,U:unimodal,M:multimodal, ABC with other algorithms: ABC algorithm is unable to

S:separable,N:non-separable reach solution in functions f7f;g and f,, but it reached to
Funct | FunctionName Fuction D | C | Renge the exact solution of function f,q and fairly good solution
fi_| Easom ) = = costy) osty) exp(—( =) = (o, ~m)) 2| | oo to fis andf,; . All other EAs are unable to reach the
f, | Matyas £(0) = 0.26(x,> +x,%) - 0.48x,x, 2 UN- | [-10,10]

solution of these three functions. Main disadvantage of

. D 30 us -1.28,1.28 . . . -
| Qurtic f 00=Z;%"+m"dﬂml°fﬂ [ ] ABC algorithm is that it takes more CPU time to reach the
fo | sphere W= Zbi % 0L [100100] solution.
| stepint f(x)=25+zb % N R . . ) . .
- FLA with other algorithms: basic FLA algorithm do not
D — . - -
b | sep FW=). (57 NS | P give as good solution as compared to PSO and ABC. It is

0| US| 1010 unable to reach solution in functions fs, fig, fi7, f20, f21, f22,

fr | sums ® ZD 2
i umSquares flx)= ix; R . R .
fys,f24. In case of function fig it gives best solution as

i f("){;("l‘1)2‘2;"1’“-1 'O compared to all other EAs.
t | Tids f(x):ZD (x[-nZ-ZD . M= ] _ . \ )

TEEr=TE S W | = ICA with other algorithms: similar to FLA it also does not
| zan (=) Q) o+ 0sio)! give good solutions as compared to PSO and ABC.
fu_| Bohchewslgl | f) =117 + 2" ~ 03cos(3mn) - O4cos(dmny) +07 W) fEAG] Advantage of this algorithm is that it reaches to optimum
f | Bohchevsky2 | f(x) =x,% + 2x,% = 0.3 cos(3mx,) (4mx;) 403 N | Fjoota qUICkIy In less number of iterations one can know

o o oro| oro

fa | Botchewsigd | /() = 1"+ 20~ 03cos((mn) + () +03 m: ['102'10"] whether optimum value can be obtained or not.
fu | CamelBack f(x)=4x12—2.1x14+§xls+x1x2—4xzz+4-xz" 55
F00= 1007 5P + (o~ 1P+ Ga = 1P+ 00—, F |4 |UN | [-10.10] Effect of using chaotic numbers in place of random
fe | Colil A numbers is also studied. Chaotic numbers can be used in
b |Dboice | 0= (q-17 +z” i@t e 0 [N [ [-1010] initializing the population and/or movement of population
TR i ] towards optimum. Conducting large numbers of test
fo | Michalewicz10 f(")='Z,:fi“("‘)(““(ﬂ’” indicate that using chaotic numbers in movement of
o | Michlewicz f(x):—znisin(n)(sin(%))zﬂ 2w [ for population with initialization of population by random
5 v N T numbers gives better result.
f | Michalewiczs f(x):—z sin(xJ(sin(T[))z” g
i=1
fo | Rastigin f(x)=z” [ - 10 cos(2x) + 10] WS [-512512] PSO with chaotic number gives better result in almost all
0| ON | [=3030] problems. PSO with chaotic number reaches to near

D-1
fu | Rosenbrock f(x):Z [100 (g — 12+ (1~ 1]
=1

: optimum value in case of functions f,, f,;. For these two
fz | Schwefel f(x):Z —x,sin(JlT,\)
i=1

functions basic PSO unable to reach near optimum value.

0| MS | [=500500]

N 30 MN [-3232]
b | Ay f(")=‘2°“"(“"2 7112’“) ABC with chaotic numbers gives almost same result as
el Y o 120+ given by the ABC with random numbers but for some
: N T | eoneon] functions it reaches to optimum value quickly as
o | Glomk | 0= 1475), 5] o compared to ABC with random numbers.
fs | Powell f(’f):Zn_“(xwx+10x4i72)z+5(x4‘71‘xﬁd)z " -43) .
e ) 10—y In case of FLA and ICA not much better effect is
observed in using chaotic numbers in place of random
PSO with other algorithms: results obtained shows that numbers.
PSO gives fairly good solutions to the almost all problems . . )
except for functions fie,fi7fis foo, o1 and fp, where it is In this work three repr«_esentatlve cases of function f,f,,fig
failed to reach optimum solution, solution obtained for fy; are taken. These functions are selected because they are
andf,, is better than other EAs. Out of these functions two dimensional functions and therefore, they can be
f16.f21 are unimodal no separable while other functions are represented by surface plots. Also, all EAs in study
multimodal separable functions. Main advantage of PSO reached to the final solution in each case. Figs 5,8,11
algorithm is its simplicity and it reaches to the solution represent the surface plot of f,,fz,f1 functions respectively.
quickly as compared to other algorithms. Drawback of Figs §,9,12 §hows the convergence curves for these three
this algorithm is that it is verysensitive to its control functions. Figs 7,10,13 shows CPU time taken by these
parameters even a slight variation in any of these algorithms to reach final solution. Comparing figs 6 and 7

shows that FLA and ICA reached to the solutions before
42
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10 iterations and PSO took about 40 iterations but time Table 3: Function values obtained with chaotic numbers
taken to reach final solution by PSO is less than time
taken by FLA and ICA. Same is the case with other #
functions. Which shows PSO is computationally less B Actual %0 A5 o o
expensive as compared to other algorithms. value <
j | -.999999 096939 B -l
Figs 14 and 15 shows the surface plot of functionsf,, and ; 0 1R T0EDT LB D
f,; with two variables respectively. Surface plots of these - 0 7.35E m 0.00”638 0‘001169 0.*'221”
functions shows how complex these functions are. ;’ 0 1.95E'06 6'36)E T 0.261104 1;43237;
Table 2: Function values obtained with random numbers f {4 {6 04 3.333682 {6
Funct | A0l PSO ABC FLA ICA fi 0 10206 LIE6 0.0200 2769033
g T - - f 0 1.88E-03 J4TEN0 0030441 61.70311
fl -o - 302612 - 237605 2.05E 1-7 162E 9-6 f L Ll Ll L aul
2 -U2E- OB € i, ,'5 . T b -7,
fa 0 1.94E-06 0.032402517 0.00096448 0.30682399 égﬂ g 1 69E32 3‘4 lggé(lé -39033233 0409 4222
fa 0 0.00E+00 2.31E-10 1.20E+02 1.50E+02 ﬁ.’ 0 : 0 : 0 : 0 : 40
fs -0.6 -0.6 -0.6 3.937436149 -0.6 ﬁ‘, 0 ?94E15 0 0 0
s 0 879607 142E-05 102E+00 922601 fi 0 1L1E3 833E-I6 0 0
f 0 0 2.82E-08 5.01E+00 5.60E+01 i -L0316 -1.031628 10314 -1031628 103163
fo -210 -209.9999953 | -208.3080852 -161.6337868 -208.7890396 f]j 0 0 0003742 0023713 0000?62
% 50 50| 4968230577 |  -48.14794998 | -49.99994878 s 0 01657129 163E-13 1334628 136147
o 0 6.08E-08 160E-05 205601 283508 fr | 9460 462036 420614 10614 338376
o 5 5 5 5 5 fia | 18013 1301303 -1.80091 -1.301303 18013
- 0 0 0 i 5 fo | 4881 -3.337636 -3.38046 4641834 4349
- > - T - > o 0 49460675 0 04447 1733691
fu | -10316 | -1.031628453 | -1031597588 | -1.031628453 | -1.031628453 i ! 11845811 0'0”18% 37'0_2 L 5952326
: : SN T i T fit 1570 93404 7855 £133.667 718,35
i e R [\ £ 0 M) N IR0 1854469
fis 0 3.85E-05 1.41E-15 1.50E+00 3.86E+02 ﬁ‘ 0 0,0078345 0 4711405 2.0?5595
fiz -9.6602 | -8.868615341 | -4.765984836 -7.455034029 -8.604502165 ff5 0 0 0000886 0”5554 ””874
fig -1.8013 -1.801302254 -1.7988017 -1.80130341 -1.80130341 1
fig -4.6877 -4.619018042 -3.45008875 -4.594201266 -4.687658179
fao 0 0.000205978 0 8.600078383 179.147263
far 0 0.054097263 0.000381093 2755.171552 14887.80809
fa -12570 -10185.54554 | -4120.914826 -5525.188892 -7832.116382
fa 0 3.02E-05 3.11E-14 4.96E+00 1.82E+01
fos 0 0.000240859 0 6.150562692 1.6339931
fos 0 0 0.001155778 0.741950855 0.972720905
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Table 4: CPU Time required to solve the functions
Fig.5 Surface plot of Easomfunction(fy)

RANDOM NUMBERS CHAOQTIC NUMBERS
Funct Easom
PSO | ABC | FLA | ICA | PSO | ABC | FLA | ICA 12 R ‘ R ,
fi | 0016502 | 33.83684 | 0.893104 | 0.006373 | 0.086048 | 5053339 | 0.855622 | 0.097648 —— P50
2| 0019879 | 0867564 | 0811713 | 0.161606 | 0013653 | 1672332 | 0.795861 | 0.287446 ok ABC ||
f | 685021 | 60.69918 | 9.187863 | 0318333 | 6842619 | 6048162 | 949641 | 0344658 ‘\.] ::::E:
fe | 605692 | 1.120752 | 7.770823 | 0.246303 | 0.021853 | 1116779 | 8.149328 | 0.301078 sl | ']
f5 00114 | 0.113665 | 1.389757 | 0.111874 | 0.011119 | 0.077554 | 1.449402 | 0.110728 ‘\--\‘
f | 8490175 | 1128224 | 1556196 | 0.261273 | 4043949 | 1119945 | 16.09934 | 0.290571 % sk ﬁl |
fi | 2533802 | 1.824721 | 1531768 | 0.284447 | 0.136936 | 0.925001 | 15.82429 | 0.274917 E ‘;
fo | 3141636 | 1249622 | 70.79752 | 0.21464 | 2109176 | 17.83803 | 72.96034 | 057861 ; ak }g i
fo | 0362008 | 142.2193 | 13.95108 | 0.200308 | 0296376 | 175011 | 1441284 | 0436329 - \
fo | 5038727 | 37.78305 | 73.10006 | 0427847 | 11.38864 | 93.43288 | 75.61987 | 0.836852 sl '\_| |
fu | 0028142 | 6.062968 | 0.825795 | 0.136575 | 0.011914 | 0.646761 | 0.833336 | 0.166509 ‘|l
fo | 0027257 | 60807 | 0831346 | 0134025 | 0.011009 | 0.643936 | 0.828913 | 0.16151 - \_ ___ __ ]
fs | 0027101 | 6.025627 | 0.821557 | 0.161276 | 0.011028 | 6.094848 | 0.821313 | 0.189372 A R e —
fu | 0136366 | 125519 | 0.842671 | 0187172 | 0.132276 | 6251955 | 0.831682 | 0.215261 2 ‘ ‘ . . ‘ ‘ ) ) )
fs | 0140751 | 5680686 | 07416 | 0206682 | 7341341 | 59.77813 | 0759008 | 06792 M YR O nefjims % 40 4550
fis | 5537082 | 6.225045 | 15.76635 | 0.206448 | 55.37811 | 6.215984 | 79.45357 | 0.276883 1 i
T | g7 | sasanu | 75607 | 0lo6Teo | GT9B86 | 68G8E22 | T60SHAL | 0222200 Fig.6 Convergence curve for Easomfunction(f;)
fis | 0280486 | 6455791 | 0.856337 | 0171550 | 0.289207 | 6447482 | 0844151 | 0.186828 — — -
fo | 2438750 | 6540774 | 0.802471 | 0.174577 | 24.27668 | 65.69026 | 0.811212 | 0.16401
fo | 1071953 | 4025435 | 77.89875 | 0.246993 | 1047837 | 3956159 | 80.22436 | 1.269086 33.83
fu | 2995885 | 37.27963 | 7.818207 | 0.353309 | 29.75106 | 6181118 | 7.999381 | 0.301325
fo | 2051256 | 72.60486 | 8307441 | 0.248584 | 2083316 | 7154258 | 8.489359 | 1.367079 e
f | 4245605 | 6.774104 | 16.05082 | 0101525 | 4266888 | 6.801612 | 1.752358 | 0.286846 g
fu | 4171973 | 7.053063 | 81.65986 | 0.32731 | 27.70661 | 7.130018 | 83.14513 | 1.293629 A mPSO
f5 | 0493707 | 904273 | 1559134 | 0.42767 | 0495026 | 65.26951 | 15.86635 | 0.314041 g HABC
‘é" W FLA
H micA
£
0.02 EASOM
0., N 1 _—
2 0w Fig.7 Time taken to reach solution of Easomfunction(fy)
g 0.04_]
g 0.06.]
-0.08.]
01,
100

Y values

X values
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Fig.10Time taken to reach solution of Matyasfunction(f,)

Y value A0 -0 X value
Fig.11Surface plot of Michalewicz2 function(fyg)
Fig.8 Surface plot of Matyasfunction(f,) =t
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Fig.9Convergence curve for Matyasfunction(f,)
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Fig.12Convergence curve for Michalewicz2 function(fyg)

Fig.14Surface plot of Rastrigin function for two variables
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Fig.13Time taken to reach solution of Michalewicz2 £78

function(fg)

Fig.15Surface plot of Rosenbrock function with two
variables

4. CONCLUSION

In this paper a comparison among four different EAs were
presented. A brief description of each method along
with flow chart is presented to facilitate their
implementation. Programs are written in MATLAB to
implement each algorithm. Twenty-five continuous
optimization problems were solved using these
algorithms. To explore the effect of using chaotic number
inplace of random number, modificationswere done in
these algorithms. Comparison indicates that a single
technique cannot be used to get solution of all types of
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problems. PSO with chaotic number gives solution to
almost all problems but parameter setting required to get
these solutions are different for different problems. For a
new problem one has to solve same problem with
different settings to get reasonable solution.
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