
CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

36

Comparison of Evolutionary Optimization Techniques for Unconstrained

Continuous Optimization Problems

Joji Thomas
1
,Ganpat lal Rakesh

2
 ,S. S. Mahapatra

3

1
Associate Professor, Mechanical Engineering, CCET Bhilai, Chhattisgarh, india, joji.siji@gmail.com

2
Assistant Professor, Mechanical Engineering, CCET Bhilai, Chhattisgarh, india, ganpat123@gmail.com

3
Professor, Mechanical Engineering, NIT Rourkela, Odisha, india, ssm@nitrkl.ac.in

Abstract

This paper represents, a comparison between four Evolutionary Algorithms (EAs) i.e. Particle swarm optimization(PSO),

Artificial Bee Colony algorithm(ABC), Shuffled frog leaping algorithm(SFL) and Imperialistic competitive algorithm (ICA)

for solving optimization problems is made. These techniques can be useful to solve complicated real-world problems. Testing

of these algorithms with standard problems is necessary to check their effectiveness. The basic versions of four algorithms

are implemented in MATLAB and are applied to twenty-five unconstrained continuous optimization problems available in

literature.

Index Terms: EAs, Optimization, PSO, ABC, SFL, ICA

1. Introduction

In computational science, optimization refers to the

selection of a best element from some set of available

alternatives. In the simplest case, this means solving

problems in which one seeks to maximize (or to

minimize) a real function by systematically choosing the

values of real or integer variables from within an allowed

set. Evolutionary optimization techniques can be used for

getting near optimal solutions of difficult optimization

problems. There are different types of Evolutionary

techniques in use, natural evolutionary techniques e.g.

GA,DE etc., swarm intelligence-based techniques e.g.

PSO,ABC etc.andcultural algorithms e.g. ICA.

Evolutionary algorithms are stochastic search methods

that mimic the metaphor of natural biological evolution

and/or the social or cultural behaviour of species.

Researchers have developed computational systems that

mimic the efficient behaviour of species such as birds,

bees, and frogs as a means to seek faster and more robust

solutions to complex optimization problems. The first

evolutionary based technique introduced in the literature

was the genetic algorithm. GAs was developed based on

the Darwinian principle of the „survival of the fittest‟ and

the natural process of evolution through reproduction [1].

A popular swarm intelligence-based algorithm is the

particle swarm optimization algorithm which was

developed by Eberhart and Kennedy in 1995[2]. It models

the social behaviour of bird flocking or fish schooling.

Another swarm intelligence-based algorithm is artificial

bee colony algorithm proposed by Karaboga in 2005[3],

which mimic the foraging behaviour of a honeybee

colony. Shuffled Frog Leaping algorithm developed by

Eusuff and Lansey in 2003[4] is a mementicmetaheuristic

based on the frog behaviour. In the SFL, the population

consists of a set offrogs (solutions) that is partitioned into

subsets referred to as memeplexes. The different

memeplexes are considered as different cultures of frogs,

each performing a local search. Within each memeplex,

the individual frogs hold ideas, that can be influenced by

the ideas of other frogs, and evolve through a process of

mementic evolution. After a defined number of mementic

evolution steps, ideas are passed among memeplexes in a

shuffling process. The Imperialist Competitive Algorithm

proposed by Atashpazet al. [5]is based on a socio-

politically inspired optimization strategy. In this paper,

the four EAs are reviewed and a flowchart for each

algorithm is presented to facilitate its implementation.

Performance comparison among the four algorithms is

then presented. The standard versions of these techniques

use pseudo-random numbers which cannot ensure the

optimization‟s ergodicity in solution space because they

are absolutely random [6]therefore, a slight modification

is done in each of the mentioned EAs by employing the

chaotic operator (with Logistic map) in place of random

number generator. Chaos method has the particular

characteristics, such as the randomicity and ergodicity,

which can enhance the diversity of the particles and

actuate the particles to move out from the local near-

optimal solutions[7].Comparison is also made between

these modified EAs.

In each of these EAs a population of candidate solutions

is generated randomly. These populations are called with

different names in different techniques.

mailto:joji.siji@gmail.com

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

37

2. Evolutionary algorithms(EAs):

2.1 Particle Swarm Optimization(PSO)

PSO optimizes a problem by having a population of

candidate solutions, here dubbed particles, and moving

these particles around in the search-space according to

simple mathematical formulae over the particle's position

and velocity. Each particle's movement is influenced by

its local best-known position called pBest and the best-

known position of the entire swarm called gBest. In this

way it is expected that swarm moves toward the best

solution[2].

The position of a particle refers to a possible solution of

the function to be optimized, which is updated in each

iteration using formula 2. Here velocity of particle in each

iteration is calculated using formula 1. If R is range of

vector x then velocity is normally initialized randomly in

the range [-R, +R].

vi= ω vi + φprp (pBesti-xi) + φgrg (gBest-

xi).......... (1)

xi=xi+vi (2)
The parameter ω is called the inertia weight and controls

the magnitude of the old velocity in the calculation of the

newvelocity, whereas φp and φg determine the significance

of pBestandgBestrespectively,rp and rgare the random

numbers generated in the range [0,1]. Furthermore, vi at

any iteration is constrained by the parameter vmaxwhich is

normally taken about 20% of the range of v. If in any

iteration position of the particle crosses the boundary then

velocity is adjusted so that particles position reaches to

the boundary which is called clamping of velocity.

In the modified version rpandrgare the chaotic numbersin

the range [0,1].

Fig.1 The flowchart of PSO algorithm

2.2Artificial Bee Colony algorithm (ABC)

In ABC algorithm, the position of a food source

represents a possible solution to the optimization problem.

At initialization, a set of food source positions are

randomly produced. The nectar amount retrievable from

food source corresponds to the quality of the solution

(fitness value) represented by that food source. Each cycle

of the search consists of three steps after initialization

stage: placing the employed bees onto the food sources

and calculating their nectar amounts; placing the

onlookers onto the food sources and calculating the nectar

amounts and determining the scout bees and placing them

onto the randomly determined food sources.

Each employed bee searches a nearby food source and

checks its nectar amount, if new food source is having

higher nectar(better fitness) then it forgets the previous

food source and remembers only new one. At the second

step, an onlooker prefers a food source area depending on

the nectar information distributed by the employed bees.

As the nectar amount of a food source increases, the

probability of that foodsource chosen also increases. After

selecting a food source onlooker bee searches, a nearby

source and checks itsnectar amount, if new foodsource is

having higher nectar(better fitness) then it forgets the

previous food source and remembers only new one.

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

38

Searching of nearby food source by employed and

onlooker bees is done according to following equation[3].

𝑣𝑖𝑗 = 𝑥𝑖𝑗 + ∅𝑖𝑗 (𝑥𝑖𝑗 − 𝑥𝑘𝑗)

Where𝑖, 𝑘 ∈ 1,2 … . . 𝑁𝑆 𝑁𝑆𝑖𝑠𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑓𝑜𝑜𝑑𝑠𝑜𝑢𝑟𝑐𝑒𝑠

And𝑗 ∈

 1,2 … … 𝐷 𝐷𝑖𝑠𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑝𝑟𝑜𝑏𝑙𝑒𝑚.𝑘and𝑗are

randomly chosen indexes. Although 𝑘 is determined

randomly it should be different from 𝑖. ∅𝑖𝑗 is a random

number between [1,-1]. If a parameter value produced by

this operation exceeds its predetermined limit, the

parameter can be set to an acceptable value. Normally the

value of the parameter exceeding its limit is set to its limit

value (clamping).

Selection of a food source by an onlooker bee is done on

the basis of probability value associated with that food

source,𝑝𝑖 calculated by the following expression [3].

𝑝𝑖 =
𝑓𝑖𝑡𝑖

 𝑓𝑖𝑡𝑖
𝑁𝑆
𝑖=1

where𝑓𝑖𝑡𝑖 is the fitness of 𝑖𝑡ℎ food source.

For minimization type problems 𝑓𝑖𝑡𝑖=1/(objective

function value for 𝑖𝑡ℎ food source).

In this work, after calculating probabilities selection of

food source is done on the basis of Roulette Wheel

Selection.

The food source which is abandoned by the bees is

replaced with a new food source by the scouts. In ABC, if

a position cannot be improved further through a

predetermined number of cycles, then that food source is

assumed to be abandoned. Suppose a food source 𝑥𝑖 is

abandoned, then the scout discovers a new food source

randomly to replace the 𝑥𝑖 .

In the modified version chaotic number can be used to

generate initial population, to search neighbouring food

source by employed and onlooker bees, and to discover a

new food source by scout bees. In this work chaotic

numbers are used only in searching of neighbourhood

solutions.

Fig.2 The flowchart of ABC algorithm

2.3Shuffled frog leaping algorithm(SFL)

In the SFL, the population consists of a set of frogs

(solutions) that is partitioned into subsets referred to as

memplexes. The different memplexes are considered as

different cultures of frogs, each performing a local search.

Within each memplex, the individual frogs hold ideas,

that can be influenced by the ideas of other frogs, and

evolve through a process of mementic evolution. After a

defined number of mementic evolution steps, ideas are

passed among memplexes in a shuffling process [8]. The

local search and the shuffling processes continue until

defined convergence criteria are satisfied [4].

In SFL an initial population of p frogs is created

randomly. Each frog x is a D dimensional vector and is a

potential solution to the problem. Afterwards fitness value

of each frog is calculated and frogs are sorted in

descending order of their fitness. Then the entire

population is divided into mmemplexes with n=p/m frogs

in each memplex. In this process first frog goes to first

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

39

memplex, second to second and m to m
th

memplex then

(m+1)
th

 frog will go to 1
st
memplex and so on.

Within each memplex best and worst frogs according to

their fitness are termed as xb and xw. Also, the best frog in

entire population is termed as xg. In the evolution process

only, the worst frog changes its position according to

following equations [4]

Change in frog position S = rand().(xb-xw)

New position of worst frogxw= xw+SSmax≥S≥-Smax

Where rand() is a rand number between 0 and 1; and Smax

is the maximum allowed change in a frog‟s position.

If fitness of new frog is better than the old frog then the

worst frog is replaced with the new one, else the same

equations is applied with xbreplaced by xg. Even after

applying above equations if solution is not improved then

the worst frog is replaced by a randomly generated new

frog. The calculations then continue for aspecific number

of iterations. After this, all the memplexes are combined

together and a new set of memplexes created after

reshuffling. Process continues till the convergence criteria

are not met.

In modified version, chaotic numbers in place of random

numbers are used to change the frog position.

Fig.3 The flowchart of SFLA algorithm

2.4Imperialistic competitive algorithm (ICA)

Like other evolutionary algorithm ICA starts with an

initial population of potential solutions called countries of

the world. Some of the best countries in the population are

selected as imperialists and rest form the colonies of these

imperialists. All the colonies are distributed among

imperialists according to their power. More the power of

an imperialist more number of colonies it possess. After

dividing all the colonies among imperialists these colonies

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

40

start moving towards their relevant imperialist. Total

power of an empire depends on both the power of the

imperialist and power of its colonies. Thereafter an

imperialistic competition begins amongst the empires.

During competition any empire with no colony in it is

eliminated from the competition. The movement of

colonies towards their imperialist and competition among

empires hopefully cause all the countries to converge to a

state in which there exists only one empire in the world

with all the countries having same power as of its

imperialist [5].

In ICA an initial population of p countries is generated.

Each country xis a D dimensional vector and is a potential

solution to the problem. Out of these pcountries𝑁𝑖𝑚𝑝 of

the most powerful countries are selected as the

imperialist. The remaining countries 𝑁𝑐𝑜𝑙 will be colonies

of the empires.

Initially colonies are divided among imperialists

according to their power. Power of each imperialist is

calculated according to the cost of the country the term

cost is similar to the term fitness as used in other EAs.

Normalized cost of an imperialist Cn=cn-max{ci} where cn

is cost(fitness) of n
th

 imperialist.

Normalized power of each imperialist is defined by

𝑝𝑛 =
𝐶𝑛

 𝐶𝑖
 , more the power of an imperialist more

number of colonies will be allotted to it.

Initial number of colonies to n
th

 empire will be

𝑁𝐶𝑛 = 𝑟𝑜𝑢𝑛𝑑(𝑝𝑛 . 𝑁𝑐𝑜𝑙)

out of 𝑁𝑐𝑜𝑙 ,the 𝑁𝐶𝑛colonies are selected randomly and

allotted to the nth empire.

In the second stage, colonies move towards their

imperialist. A country𝑥𝑖
𝑛 of n

th
 imperialist move towards

its imperialist according to following equations [5]

𝑑 = 𝑥𝑖𝑚𝑝
𝑛 − 𝑥𝑖

𝑛𝑑is a vector representing distance between

the n
th

 imperialist and i
th

 country of n
th

imperialist

New position of the country will be given by

𝑥𝑖
𝑛 = 𝑥𝑖

𝑛 + 𝑟𝑎𝑛𝑑. 𝛽. 𝑑 (3)

Where rand is a random number between [0,1] and 𝛽is a

number greater than 1. In this equation 𝑥𝑖
𝑛 and 𝑑 both are

D dimensional vector, multiplying a single random

number to 𝑑 causes movement of colony towards

imperialist along the line joining colony to imperialist. To

search different points around the imperialist a random

amount of deviation to the

direction of movement is given. This is done by

multiplying different random numbers to different

dimensions of 𝑑 [10].

If cost of the colony so modified is higher than its

imperialist then both will exchange their position in the

empire.

Total power of an empire is calculated according to the

total cost of an empire which is defined as

𝑇𝐶𝑛 = 𝐶𝑛 ,𝑖𝑚𝑝 + 𝜉. 𝑚𝑒𝑎𝑛{𝐶𝑖
𝑛}Where𝜉 is a positive

number which is considered to be less than one.

In imperialistic competition the weakest colony of the

weakest empire is allotted to another empire. This

allotment is done based on the total power of the empires.

Each empire has a probability of getting the colony.

Probability of each empire is calculated based on the

normalized total cost of the empire given by

𝑁𝑇𝐶𝑛 = 𝑇𝐶𝑛 − max{𝑇𝐶𝑖}where𝑇𝐶𝑛 is the total cost of

the nth empire. Having the normalized total cost, the

possession probability of each empire is given by

𝑝𝑝𝑜𝑠 =
𝑁𝑇𝐶𝑛

 𝑁𝑇𝐶𝑖
 now form a vector containing possession

probability of all the empires.

𝑃 = [𝑝𝑝𝑜𝑠 1 , 𝑝𝑝𝑜𝑠 2 , 𝑝𝑝𝑜𝑠 3 … 𝑝𝑝𝑜𝑠𝑁𝑖𝑚𝑝]

Then create a vector of random numbers in a range [0,1]

having a size of 𝑃.

𝑅 = [𝑟1 , 𝑟2 , 𝑟3 , … … … . 𝑟𝑁𝑖𝑚𝑝]

Then calculate

𝑃𝑅𝑂𝐵 = 𝑃 − 𝑅
Referring to vector𝑃𝑅𝑂𝐵, the weakest colony will be

given to an empire whose relevant index in 𝑃𝑅𝑂𝐵 is

maximum.

After imperialistic competition if any empire has no

colony then the empire is eliminated and its imperialist is

allotted to an empire with highest power.

Iterations will be terminated when only one empire

remains or if cost of all empires becomes same.

In chaotic version, chaotic number in place of random

number is used in equation (3)[11].

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

41

Fig.4The flowchart of ICA algorithm

Settings:
Each algorithm has its own parameters that affect its

performance in terms of solution quality and processing

time. To obtain the best solutions from each algorithm

initial settings are made according to previously reported

values in the literature [2, 3, 4, 5]. Then these values are

altered to get best solutions possible by these algorithms.

In all the algorithms random numbers are generated using

same seed. All problems are of minimization type

therefore fitness value is equal to reciprocal of objective

function value. Maximum number of cycles used for any

algorithm is 80000. During the iterations if any

solution generated is violating the bound constraints then

it is reset to its nearest boundary [12].

In modified version of each method chaotic numbers are

generated using the formula [9]

𝑁𝑘+1 = 𝜇. 𝑁𝑘 . (1 − 𝑁𝑘)

in this paper value of 𝜇 is taken as 0.4 and initial chaotic

number 𝑁0 is taken as 0.1.

PSO settings[2,13]:

Cognitive and social components (φpandφgin (2))are

constants that can be used to change the weighting

between personal and population experience, respectively.

In our experiments value of φp and φg are set to in

between 1.4 to 2. Inertia weight ω was taken in between

0.8 to1.2. Initial population size is taken as 20. Maximum

velocity is clamped to 20% of the total range of velocity.

ABC setting[3]:

Size of initial population is taken as 25. Parameter limit is

the maximum number of cycles for which a food source.

If a food source does not improve in a predetermined

number of cycles then it is abandoned. This number of

cycles is called limit and is set to SN*D, where SN is

number of food sources and D is dimension of the

problem.

FLA setting[4]:

Size of initial population is taken as 200. Number of

memplexes is equal to 20. Number of iterations within

each memplex is taken as 10. Maximum allowed change

in the frog position Smax is taken about 25% of the range

of frog position.

ICA setting[5]:

Number of countries is taken as 80. Number of

imperialists is either 8 or 9. Value of 𝛽is taken as 2 and

value of 𝜉 is taken as 0.1.

Benchmark functions:

To compare the performance of four EAs, 25 benchmark

problems for continuous optimization are used[3]. A

description ofthese test problems is given in the table 1.

3.Results and discussion.
the results obtained by solving these test problems are

summarized in tables 2,3 and 4. The tests are performed

to check whether actual solution is obtained within

specified number of iterations. Also processing time for

each algorithm is calculated to measure the speed of each

EA, because the number of generations in each

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

42

evolutionary cycle is different from one algorithm to

another.

Table 1: Benchmark functions used in experiments

D:dimension,C:characteristics,U:unimodal,M:multimodal,

S:separable,N:non-separable

PSO with other algorithms: results obtained shows that

PSO gives fairly good solutions to the almost all problems

except for functions f16,f17,f19, f20, f21 and f22 where it is

failed to reach optimum solution, solution obtained for f17

andf22 is better than other EAs. Out of these functions

f16,f21 are unimodal no separable while other functions are

multimodal separable functions. Main advantage of PSO

algorithm is its simplicity and it reaches to the solution

quickly as compared to other algorithms. Drawback of

this algorithm is that it is verysensitive to its control

parameters even a slight variation in any of these

parameters may prevent the algorithm to reach the actual

solution. It is also observed that same parameter setting

cannot work for all problems.

ABC with other algorithms: ABC algorithm is unable to

reach solution in functions f17,f19 and f22 but it reached to

the exact solution of function f20 and fairly good solution

to f16 andf21 . All other EAs are unable to reach the

solution of these three functions. Main disadvantage of

ABC algorithm is that it takes more CPU time to reach the

solution.

FLA with other algorithms: basic FLA algorithm do not

give as good solution as compared to PSO and ABC. It is

unable to reach solution in functions f5, f16, f17, f20, f21, f22,

f23,f24. In case of function f19 it gives best solution as

compared to all other EAs.

ICA with other algorithms: similar to FLA it also does not

give good solutions as compared to PSO and ABC.

Advantage of this algorithm is that it reaches to optimum

quickly. In less number of iterations one can know

whether optimum value can be obtained or not.

Effect of using chaotic numbers in place of random

numbers is also studied. Chaotic numbers can be used in

initializing the population and/or movement of population

towards optimum. Conducting large numbers of test

indicate that using chaotic numbers in movement of

population with initialization of population by random

numbers gives better result.

PSO with chaotic number gives better result in almost all

problems. PSO with chaotic number reaches to near

optimum value in case of functions f20, f21. For these two

functions basic PSO unable to reach near optimum value.

ABC with chaotic numbers gives almost same result as

given by the ABC with random numbers but for some

functions it reaches to optimum value quickly as

compared to ABC with random numbers.

In case of FLA and ICA not much better effect is

observed in using chaotic numbers in place of random

numbers.

In this work three representative cases of function f1,f2,f18

are taken. These functions are selected because they are

two dimensional functions and therefore, they can be

represented by surface plots. Also, all EAs in study

reached to the final solution in each case. Figs 5,8,11

represent the surface plot of f1,f2,f18 functions respectively.

Figs 6,9,12 shows the convergence curves for these three

functions. Figs 7,10,13 shows CPU time taken by these

algorithms to reach final solution. Comparing figs 6 and 7

shows that FLA and ICA reached to the solutions before

Funct FunctionName Fuction D C Range

f1 Easom 𝑓 𝑥 = − cos 𝑥1 cos 𝑥2 exp − 𝑥1 − 𝜋 2 − 𝑥2 − 𝜋 2 2 UN [−100,100]

f2 Matyas 𝑓 𝑥 = 0.26 𝑥1
2 + 𝑥2

2 − 0.48𝑥1𝑥2 2 UN [−10,10]

f3 Quartic 𝑓 𝑥 = 𝑖𝑥𝑖
4

𝐷

𝑖=1
+ 𝑟𝑎𝑛𝑑𝑜𝑚 0,1

30 US [−1.28,1.28]

f4 sphere 𝑓 𝑥 = 𝑥𝑖
2

𝐷

𝑖=1

30 US [−100,100]

f5 StepInt 𝑓 𝑥 = 25 + 𝑥𝑖

𝐷

𝑖=1

5 US [−5.12,5.12]

f6 Step 𝑓 𝑥 = ([𝑥𝑖 + 5])2
𝐷

𝑖=1

30 US [−100,100]

f7 SumSquares 𝑓 𝑥 = 𝑖𝑥𝑖
2

𝐷

𝑖=1

30 US [−10,10]

f8 Trid10 𝑓 𝑥 = (𝑥𝑖 − 1)2
𝐷

𝑖=1
− 𝑥𝑖𝑥𝑖−1

𝐷

𝑖=2

10 UN [−𝐷2 , 𝐷2]

f9 Trid6 𝑓 𝑥 = (𝑥𝑖 − 1)2
𝐷

𝑖=1
− 𝑥𝑖𝑥𝑖−1

𝐷

𝑖=2

6 UN [−𝐷2 , 𝐷2]

f10 Zakharov 𝑓 𝑥 = 𝑥𝑖
2

𝐷

𝑖=1
+ (0.5𝑖𝑥𝑖

𝐷

𝑖=1
)2 + (0.5𝑖𝑥𝑖

𝐷

𝑖=1
)4

10 UN [−5,10]

f11 Bohchevsky1 𝑓 𝑥 = 𝑥1
2 + 2𝑥2

2 − 0.3 cos 3𝜋𝑥1 − 0.4 cos 4𝜋𝑥2 + 0.7 2 MS [−100,100]

f12 Bohchevsky2 𝑓 𝑥 = 𝑥1
2 + 2𝑥2

2 − 0.3 cos 3𝜋𝑥1 4𝜋𝑥2 + 0.3 2 MN [−100,100]

f13 Bohchevsky3 𝑓 𝑥 = 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1 + 4𝜋𝑥2) + 0.3 2 MN [−100,100]

f14 CamelBack 𝑓 𝑥 = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4
2 MN [−5,5]

f15 Colville

𝑓 𝑥 = 100(𝑥1
2 − 𝑥2)2 + (𝑥1 − 1)2 + (𝑥3 − 1)2 + 90(𝑥3

2 − 𝑥4)2

+ 10.1 𝑥2 − 1 2 + 𝑥4 − 1 2
+ 19.8 𝑥2 − 1 𝑥4 − 1

4 UN [−10,10]

f16 DixonPrice 𝑓 𝑥 = (𝑥𝑖 − 1)2 + 𝑖
𝐷

𝑖=2
(2𝑥𝑖

2 − 𝑥𝑖−1)2
30 UN [−10,10]

f17 Michalewicz10 𝑓 𝑥 = − sin
𝐷

𝑖=1

 𝑥𝑖 (sin
𝑖𝑥𝑖

2

𝜋
)20

10 MS [0, 𝜋]

f18 Michalewicz2 𝑓 𝑥 = − sin
𝐷

𝑖=1

 𝑥𝑖 (sin
𝑖𝑥𝑖

2

𝜋
)20

2 MS [0, 𝜋]

f19 Michalewicz5 𝑓 𝑥 = − sin
𝐷

𝑖=1

 𝑥𝑖 (sin
𝑖𝑥𝑖

2

𝜋
)20

5 MS [0, 𝜋]

f20 Rastrigin 𝑓 𝑥 = [𝑥𝑖
2

𝐷

𝑖=1
− 10 cos 2𝜋𝑥𝑖 + 10]

30 MS [−5.12,5.12]

f21 Rosenbrock 𝑓 𝑥 = [100
𝐷−1

𝑖=1
(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)2]
30 UN [−30,30]

f22 Schwefel 𝑓 𝑥 = −
𝐷

𝑖=1
𝑥𝑖 sin 𝑥𝑖

30 MS [−500,500]

f23 Akley

𝑓 𝑥 = −20 exp −0.2
1

𝑛
 𝑥𝑖

2
𝑛

𝑖=1

− exp(
1

𝑛
 cos(2𝜋𝑥𝑖)) + 20 + 𝑒

𝑛

𝑖=1

30 MN [−32,32]

f24 Griewank 𝑓 𝑥 = 1 +
1

4000
 𝑥𝑖

2 − cos(
𝑥

 𝑖
)

𝑛

𝑖=1

𝑛

𝑖=1

30 MN [−600,600]

f25 Powell
𝑓 𝑥 = (𝑥4𝑖−3 + 10𝑥4𝑖−2)2 + 5(𝑥4𝑖−1 − 𝑥4𝑖)

2
𝑛/4

𝑖=1

+ (𝑥4𝑖−2 − 𝑥4𝑖−1)4 + 10(𝑥4𝑖−3 − 𝑥4𝑖)
4

24 UN [−4,5]

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

43

10 iterations and PSO took about 40 iterations but time

taken to reach final solution by PSO is less than time

taken by FLA and ICA. Same is the case with other

functions. Which shows PSO is computationally less

expensive as compared to other algorithms.

Figs 14 and 15 shows the surface plot of functionsf20 and

f21 with two variables respectively. Surface plots of these

functions shows how complex these functions are.

Table 2: Function values obtained with random numbers

Table 3: Function values obtained with chaotic numbers

Funct
Actual

value
PSO ABC FLA ICA

f1 -1 -0.999803974 -0.996252324 -1 -1

f2 0 3.02E-12 2.37E-05 2.05E-17 1.62E-96

f3 0 1.94E-06 0.032402517 0.00096448 0.30682399

f4 0 0.00E+00 2.31E-10 1.20E+02 1.50E+02

f5 -0.6 -0.6 -0.6 3.937436149 -0.6

f6 0 8.79E-07 1.44E-05 1.02E+00 9.22E-01

f7 0 0 2.82E-08 5.01E+00 5.60E+01

f8 -210 -209.9999953 -208.3080852 -161.6337868 -208.7890396

f9 -50 -50 -49.68230577 -48.14794998 -49.99994878

f10 0 6.08E-08 1.60E-05 4.05E-01 2.88E-08

f11 0 0 0 0 0

f12 0 0 0 0 0

f13 0 0 5.00E-16 0 0

f14 -1.0316 -1.031628453 -1.031597588 -1.031628453 -1.031628453

f15 0 1.92E-09 0.03580093 0.094817296 0.155896041

f16 0 3.85E-05 1.41E-15 1.50E+00 3.86E+02

f17 -9.6602 -8.868615341 -4.765984836 -7.455034029 -8.604502165

f18 -1.8013 -1.801302254 -1.7988017 -1.80130341 -1.80130341

f19 -4.6877 -4.619018042 -3.45008875 -4.594201266 -4.687658179

f20 0 0.000205978 0 8.600078383 179.147263

f21 0 0.054097263 0.000381093 2755.171552 14887.80809

f22 -12570 -10185.54554 -4120.914826 -5525.188892 -7832.116382

f23 0 3.02E-05 3.11E-14 4.96E+00 1.82E+01

f24 0 0.000240859 0 6.150562692 1.6339931

f25 0 0 0.001155778 0.741950855 0.972720905

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

44

Table 4: CPU Time required to solve the functions

Fig.5 Surface plot of Easomfunction(f1)

Fig.6 Convergence curve for Easomfunction(f1)

Fig.7 Time taken to reach solution of Easomfunction(f1)

Funct
RANDOM NUMBERS CHAOTIC NUMBERS

PSO ABC FLA ICA PSO ABC FLA ICA

f1 0.016502 33.83684 0.893104 0.096373 0.066048 50.53339 0.855622 0.097648

f2 0.019879 0.867564 0.811713 0.161606 0.013653 1.672332 0.795861 0.287446

f3 68.5021 60.69918 9.187863 0.318333 6.842619 60.48162 9.49641 0.344658

f4 6.05692 1.120752 7.770823 0.246303 0.021853 1.116779 8.149328 0.301078

f5 0.0114 0.113665 1.389757 0.111874 0.011119 0.077554 1.449402 0.110728

f6 8.490175 1.128224 15.56196 0.261273 4.043949 1.119945 16.09934 0.290571

f7 25.33892 1.824721 15.31768 0.284447 0.136936 0.925001 15.82429 0.274917

f8 31.41636 124.9622 70.79752 0.21464 21.09176 17.83803 72.96034 0.57861

f9 0.362898 142.2193 13.95108 0.200398 0.296376 17.5011 14.41284 0.438329

f10 50.38727 37.78305 73.10906 0.427847 11.38864 93.43288 75.61987 0.836852

f11 0.028142 6.062968 0.825795 0.136575 0.011914 0.646761 0.833336 0.166509

f12 0.027257 6.0807 0.831346 0.134025 0.011009 0.643936 0.828913 0.16151

f13 0.027101 6.025627 0.821557 0.161276 0.011028 6.094848 0.821313 0.189372

f14 0.136366 12.5519 0.842671 0.187172 0.132276 62.51955 0.831682 0.215261

f15 0.140751 58.80686 0.7416 0.206682 7.341341 59.77813 0.759008 0.6792

f16 55.37082 6.225945 15.76635 0.296448 55.37811 6.215984 79.45357 0.276883

f17 42.22675 68.53247 7.569207 0.196749 67.93186 68.68522 7.605441 0.222201

f18 0.289486 64.55791 0.856337 0.171559 0.289207 64.47482 0.844151 0.186828

f19 24.38759 65.40774 0.802471 0.174577 24.27668 65.69026 0.811212 0.16401

f20 107.1953 4.025435 77.89875 0.246993 104.7837 3.956159 80.22436 1.269086

f21 29.95885 37.27963 7.818207 0.353399 29.75106 61.81118 7.999381 0.301325

f22 20.51256 72.62486 8.307441 0.248584 20.83316 71.54258 8.489359 1.367079

f23 42.45895 6.774194 16.05082 0.101525 42.66888 6.801612 1.752358 0.286846

f24 41.71973 7.053963 81.65986 0.32731 27.70661 7.130018 83.14513 1.293629

f25 0.493707 90.4273 15.59134 0.42767 0.495026 65.26951 15.86635 0.314041

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

45

Fig.8 Surface plot of Matyasfunction(f2)

Fig.9Convergence curve for Matyasfunction(f2)

Fig.10Time taken to reach solution of Matyasfunction(f2)

Fig.11Surface plot of Michalewicz2 function(f18)

Fig.11Surface plot of Michalewicz2 function(f18)

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

46

Fig.12Convergence curve for Michalewicz2 function(f18)

Fig.13Time taken to reach solution of Michalewicz2

function(f18)

Fig.14Surface plot of Rastrigin function for two variables

Fig.15Surface plot of Rosenbrock function with two

variables

4. CONCLUSION

In this paper a comparison among four different EAs were

presented. A brief description of each method along

with flow chart is presented to facilitate their

implementation. Programs are written in MATLAB to

implement each algorithm. Twenty-five continuous

optimization problems were solved using these

algorithms. To explore the effect of using chaotic number

inplace of random number, modificationswere done in

these algorithms. Comparison indicates that a single

technique cannot be used to get solution of all types of

CCET JOURNAL OF SCIENCE AND ENGINEERING EDUCATION
(ISSN 2455-5061) Vol. – 4, Page-36-47, Year-2019

47

problems. PSO with chaotic number gives solution to

almost all problems but parameter setting required to get

these solutions are different for different problems. For a

new problem one has to solve same problem with

different settings to get reasonable solution.

REFERENCES

[1]. D E Goldberg, “Genetic Algorithms in Search,

Optimization, and Machine Learning “Addison-

Wesley(1989).

[2]. J. Kennedy, R.C. Eberhart, in: Particle Swarm

Optimization, 1995 IEEE International Conference

on Neural Networks, vol. 4, 1995, pp. 1942–1948.

[3]. Karaboga, D. andAkay, B. (2009), “A comparative

study of Artificial Bee Colony algorithm”, Applied

Mathematics and Computation, Vol. 214, No. 1, pp.

108-132.

[4]. Eusuff, M.M. and Lansey, K.E., Optimization of

water distribution network design using the shuffled

frog leaping algorithm. Journal of WaterResources

Planning and Management ASCE, 2003, 129, 210 –

225.

[5]. E. AtashpazGargari & Caro Lucas, “Imperialist

Competitive Algorithm: An Algorithm for

Optimization Inspired by Imperialistic

Competition”, IEEE Congress on Evolutionary

Computation, Singapore, 2007, pp 4661-4667.

[6]. Zheng Zhang, Fujun Shi and XinjiaGu, “A Rule-

based Classifier by Adaptive Chaotic

PSO”International Journal of Research and Reviews

in Soft and Intelligent Computing Vol. 1, No. 1,

March 2011

[7]. Leandro dos Santos Coelho, VivianaCoccoMariani,

“Use of chaotic sequences in a biologically inspired

algorithm for engineering design optimization”,

Expert Systems with Applications 34 (2008) 1905–

1913

[8]. Liong S-Y, Atiquzzaman Md. Optimal design of

water distribution network using shuffled complex

evolution. Journal of The Institution of Engineers,

Singapore 2004;44(1):93–107.

[9]. Bilal Alatas, Chaotic bee colony algorithms for

global numerical optimization, Expert Systems with

Applications, Volume 37, Issue 8, August 2010,

Pages 5682-5687

[10]. Yang Zhang, Yong Wang, Cheng Peng

“Improved Imperialist Competitive Algorithm for

Constrained Optimization”2009 International Forum

on Computer Science-Technology and

Applications,25-27 Dec. 2009, pg 204 – 207,

[11]. S. Talatahari, B. FarahmandAzar, R.

Sheikholeslami, A.H. Gandomi, Imperialist

competitive algorithm combined with chaos for

global optimization, Communications inNonlinear

Science and Numerical Simulation, Volume 17, Issue

3, March 2012, Pages 1312-1319,
[12]. Sabine Helwig and Rolf Wanka, Particle Swarm

Optimizationin High-Dimensional Bounded Search

Spaces, Proceedings of the 2007 IEEE Swarm

Intelligence Symposium, pp. 198–205.

[13]. F. Bergh, A.P. Engelbrecht, A study of particle

swarm optimization particle trajectories, Information

Sciences 176 (2006) 937–971.

[14]. K DebOptimization for engineering design,PHI

Learning Pvt. Ltd,2004

